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Abstract

Recent advances in causal inference have given rise to a general and easy-to-use for-

mula for assessing the extent to which the effect of one variable on another is mediated

by a third. This Mediation Formula is applicable to nonlinear models with both dis-

crete and continuous variables, and permits the evaluation of path-specific effects with

minimal assumptions regarding the data-generating process. We demonstrate the use

of the Mediation Formula in simple examples and illustrate why parametric methods of

analysis yield distorted results, even when parameters are known precisely. We stress

the importance of distinguishing between the necessary and sufficient interpretations of

“mediated-effect” and show how to estimate the two components in nonlinear systems

with continuous and categorical variables.
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1 Introduction

Consider a randomized clinical trial in which an intervention X shows a significant effect
on an outcome Y . A question that invariably comes to investigators’ minds is: How and
why does the intervention produce the effect, or, more specifically, can the effect of X on Y
be attributed to its effect on some intermediate variable Z standing between the two? The
reasons we are concerned with such questions are both scientific and practical. Scientifically,
mediation tells us “how nature works” and, practically, it enables us to predict behavior
under a rich variety of conditions and interventions. For example, an investigator interested
in preventing Y may wish to assess the extent to which Y could be prevented by changing
an intermediate variable, Z, standing between X and Y , or modifying some intermediate
process between X and Z (MacKinnon, 2008, Ch. 2; Bullock, Green, & Ha, 2010).

For the past few decades the analysis of mediation has been dominated by linear regression
paradigms, most notably the one advanced by Baron and Kenny (1986), which can be stated
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1 INTRODUCTION 2

as follows: To test the contribution of a given mediator Z to the effect of X on Y , first
regress Y on X and estimate the regression coefficient RY X , to be equated with the total

effect. Second, include Z in the regression and estimate the partial regression coefficient
RY X ·Z when Z is “controlled for” (or “conditioned on” or “adjusted for”). The difference
between the two slopes, RY X −RY X ·Z, would then measure the reduction in the total effect
due to controlling for Z and should quantify the effect mediated through Z.

The intuition behind this scheme is demonstrated in Fig. 1(a) which shows a linear
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Figure 1: (a) A single mediator Z contributing β × γ to the overall effect. (b) Multiple
mediators, each contributing βi × γi. The error terms, ε1, ε2, ε3 represent factors omitted
from the analysis.

structural equation model governing the causal relationships between X, Y, and Z. If the
total effect of X on Y through both pathways is τ = α + βγ, by adjusting for Z, we sever
the Z-mediated path and the effect will be reduced to α. The difference between the two
regression slopes gives

τ − α = βγ (1)

and the product βγ is what we expect the z-mediated effect to be.
Alternatively, one can venture to estimate β and γ independently of τ . This is done by

first estimating the regression slope of Z on X to get β, then estimating the regression slope
of Y on Z controlling for X, which gives us γ; multiplying the two slopes together gives us
the mediated effect βγ. The scheme generalizes naturally to multi-path models, as shown
in Fig. 1(b) which represents an opportunity to intervene on three mediating variables, or
any subset thereof. The difference between the total effect τ and the effect measured after
adjusting for mediator Zi gives the extent to which the indirect path through Zi contributes
to the overall effect, τ . Again, this can be estimated either by the difference-in-coefficients
or product-of-coefficients method.

The validity of these two methods depends of course on the assumption that the error
terms, ε1, ε2, and ε3, are uncorrelated for, otherwise, some of the structural parameters α, β
and γ would not be estimable by regression analysis and both the difference-in-coefficients
and product-of-coefficients methods would produce biased results. In randomized trials,
where ε1 can be identified with the randomization device, we are assured that ε1 is un-
correlated with ε2 and ε3 and, so, the regressional estimates of τ and β will be unbiased.
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However, randomization does not remove correlations between ε2 and ε3 and, if such exist,
adjusting for Z will create spurious correlation between X and Y which will be added to τ
and would prevent the proper estimate of γ or α. In other words, the regression coefficient
RY Z·X would no longer equal γ and the difference RY X −RZXRY Z·X would no longer equal
α. This follows from the fact that “controlling” or “adjusting” for Z in the analysis (by
including Z in the regression equation) does not physically disable the paths going through
Z; it merely matches samples with equal Z values, and thus induces spurious correlations
among other factors in the analysis (see Pearl, 1998; Cole & Hernán, 2002; VanderWeele
& Vansteelandt, 2009).1 Such correlations cannot be detected by statistical means and, so,
theoretical knowledge must be invoked to identify the sources of these correlations and, if
possible, control for common causes (so called “confounders”) of Z and Y .2 Remarkably,
the regressional estimates of the difference-in-coefficients and the product-of-coefficients will
always be equal.3

This approach to mediation (often associated with Baron and Kenny) has two major
drawbacks. One (mentioned above) is its reliance on the untested assumption of uncorrelated
errors, and the second is its reliance on linearity and, in particular, on a property of linear
systems called “effect constancy” (or “no interaction”): The effect of one variable on another
is independent on the level at which we hold a third. This property does not extend to
nonlinear systems; the level at which we control Z would in general modify the effect of X
on Y . For example, if the output Y requires both X and Z to be present, then holding Z at
zero would disable the effect of X on Y , while holding Z at a high value would enable the
latter.

As a consequence, additions and multiplications are not self-evident in nonlinear systems.
It may not be appropriate, for example, to define the indirect effect in terms of the “differ-
ence” in the total effect, with and without control. Nor would it be appropriate to multiply
the effect of X on Z by that of Z on Y (keeping X at some level) – multiplicative compo-
sitions demand their justifications. Indeed, all attempts to define mediation by generalizing
the difference and product strategies to nonlinear system have resulted in distorted and ir-
reconcilable results (MacKinnon, Fairchild, & Fritz, 2007; MacKinnon, Lockwood, Brown,
Wang, & Hoffman, 2007; Glynn, 2009; Pearl, 2011a).

This paper describes a recently developed method that removes these nonlinear barriers
and avails mediation analysis to a large space of new applications, especially those involving
categorical data and highly nonlinear processes. The first limitation, the requirement of error

1This can be seen vividly by setting α = γ = 0, implying zero direct and indirect effects; yet, if ε2 and ε3
are correlated, the regression coefficient RY X·Z will not equal zero, but −βcov(ε2 , ε3)/var(ε2).

2Although Judd and Kenny (1981) recognized the importance of controlling for mediator-output con-
founders, the point was not mentioned in the influential paper of (Baron & Kenny, 1986) and, as a result, it
has been ignored by most researchers in the social and psychological sciences (Judd & Kenny, 2010).

3This follows from the fact that the regressional image of (1), RY X − RY X·Z = RZXRY Z·X , is a uni-
versal identity among regression coefficients of any three variables, and has nothing to do with causation or
mediation. It will continue to hold regardless of whether confounders are present, whether the underlying
model is linear or nonlinear, or whether the arrows in the model of Fig. 1(a) point in the right direction.
The equality also holds among the OLS estimates of these parameters regardless of sample size (Hahn &
Pearl, 2011). Note the essential distinction between structural and regressional parameters, often conflated
by some writers (Sobel, 2008; Rubin, 2010); the former convey causal relationships, the latters are purely
statistical. Conditions for their equality can be found in (Pearl, 2009, p. 150).
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independence (or “no unmeasured confounders,” as it is often called) will remain intact, and
should be kept in mind throughout our discussion.4 Our focus in the sequel however will be
on crossing the linear-to-nonlinear barrier, using the same causal assumptions that support
the standard linear analysis of (Baron & Kenny, 1986).

2 Total, direct and indirect effects

Consider the nonlinear version of the mediation model, as depicted in Fig. 2. In the most
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Figure 2: A generic model depicting mediation through Z with no confounders.

general case, the corresponding structural equations would have the form:

x = F1(ε1) z = F2(x, ε2) y = F3(x, z, ε3) (2)

where X, Y , Z are discrete or continuous random variables, F1, F2, and F3 are arbitrary
functions, and ε1, ε2, ε3 represent omitted factors which are assumed to be mutually indepen-
dent yet arbitrarily distributed. Aside from this qualitative independence assumption, the
model also hypothesizes the direction of causal influences, which are often discernible from
temporal information or theoretical knowledge. Notably, the model allows for the existence
of millions of unobserved subprocesses that make up the functions F1, F2, and F3; these do
not alter questions concerning the mediating role of Z.

Since the functions F1, F2, and F3 are unknown to investigators, mediation analysis com-
mences by first defining total, direct and indirect effects in terms of those functions and,
then, expressing them in terms of the available data, which we assume is given in the form
of random samples (x, y, z) drawn from the joint probability distribution P (x, y, z).

2.1 Total effect

Among the three types of effects considered here, the easiest to define and estimate is the
total effect, TE0,1 which measures the change in Y produced by a unit change in X, say from
X = 0 to X = 1. The status of Z need not be specified in this definition, since Z is allowed
to track the changes in X and, so, we have for the total effect:

TE0,1(ε2, ε3) = F3[1, F2(1, ε2), ε3] − F3[0, F2(0, ε2), ε3]

4A complete set of techniques is now available for neutralizing error dependencies, whenever possible,
both by covariate adjustment and through the use of instrumental variables (Shpitser & Pearl, 2008; Pearl,
2009; Tian & Shpitser, 2010). These techniques are directly applicable to the analysis of mediations (Pearl,
2009, p. 128; Pearl, 2011a, Shpitser & VanderWeele, 2011), but are beyond the scope of this paper.
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where ε2 and ε3 are expected to vary from individual to individual. At the population level,
we will define the total effect TE0,1 to be the expectation of the difference above taken over
ε2 and ε3, which (assuming independent errors) gives:

TE0,1 = E(Y |X = 1) − E(Y |X = 0) (3)

where E(Y |X = 1) is the expected value of Y when X equals 1. This difference is none
other but the regression slope of Y on X, commonly estimated by OLS, which provides an
unbiased estimate of the total effect regardless of the functional form of F2 and F3 (Pearl,
2009, p. 72).

More generally, however, if we are interested in the total effect of a transition from X = x
to X = x′, where x and x′ are any two levels of X (say two dosage levels of a drug), we
write:

TEx,x′ = E(Y |X = x′) −E(Y |X = x). (4)

Clearly, in nonlinear systems, both the baseline X = x and the endpoint X = x′ may play
a role in affecting the change of Y .

2.2 Controlled and natural direct effects

The idea of estimating the direct effect of X on Y by controlling for Z is applicable to
nonlinear models as well since, assuming ε2 and ε3 are independent, conditioning on Z
simulates the physical action of “fixing” or “setting” Z at a constant value, z, thus preventing
X from transmitting its change along the mediating path X → Z → Y . The resulting
estimand is called the “controlled direct effect” (Robins & Greenland, 1992; Pearl, 2001):

CDE(z) = E(Y |X = 1, Z = z) −E(Y |X = 0, Z = z) (5)

which is the regression slope of Y on X keeping Z constant at z.5

However, the question arises: at what value should we set Z? As remarked earlier,
different settings of Z would yield different results. For example, assume that X stands for
a drug taken to cure a disease Y . As a side effect, X also stimulates the secretion of an
enzyme Z that hastens the process through which the drug acts on the disease. If we fix
Z at a high level, the drug will appear highly efficacious, while if we fix Z at a low level,
the drug will have only a meager effect. The question remains therefore, at what value of
Z should we conduct our analysis if we wish to evaluate the direct effect of the drug on the
disease, unmediated by Z?

5The general causal expression for CDE(z), which does not assume error-independence is given by:

CDE(z) = E[Y |do(X = 1, Z = z)] − E[Y |do(X = 0, Z = z)]

(see Pearl, 2009, p. 127) or, using the structural equations of Eq. (2),

CDE(z) = E[F3(1, z, ε3)] − E[F3(0, z, ε3)]

A necessary and sufficient condition for estimating CDE(z) in observational studies (in the presence of
unobserved confounders) can be derived using do-calculus (Pearl, 2009, pp. 85–88), and is given in Shpitser
and Pearl (2008) and Tian and Shpitser (2010).
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One can report, of course, the value of CDE(z) for each level Z = z, and let the user
choose the value that matches the intervention policy under consideration. In many cases,
however, the policy informed by the direct effect is not one where Z is set to a uniform level
for all units in the population but, rather, one where the sensitivity of Z to X is suppressed or
enhanced, not Z itself. Taking the enzyme example above, a policy maker may be interested
in the benefit of developing a cheaper drug, identical to the one studied, but lacking the
potential to stimulate enzyme secretion. Absent the mediating effect of Z, the efficacy of
the new drug will be determined by whatever level Z attains naturally in the population,
varying from individual to individual, not set uniformly by external control.

Under such settings, it is more meaningful to define a notion of direct effect called nat-

ural, that does not require setting Z uniformly over the population, but lets it vary from
individual to individual. This notion, denoted NDEx,x′(Y ) is defined as the expected change
in Y induced by changing X from x to x′ while keeping all mediating factors constant at
whatever value they would have obtained under X = x, before the transition from x to x′

(Robins & Greenland, 1992; Pearl, 2001).6 This definition of direct-effect invokes the phrase:
“at whatever value they would have obtained” which is counterfactual, and thus circumvents
ideological prohibitions, upheld by some statisticians, against attributing mediation to non-
manipulable variables (Pearl, 2011b). At the same time, because of its counterfactual char-
acter, the natural direct effect cannot be given direct empirical test; there is no way to rerun
history and measure subjects response under conditions they have not actually experienced.
It has been shown nevertheless (Pearl, 2001) that, for the confounding-free model of Fig. 2,
the natural direct effect can be estimated from population data7 and is given by:

NDEx,x′(Y ) =
∑

z

[E(Y |X = x′, Z = z) − E(Y |X = x, Z = z)]P (Z = z|X = x)

or, using a short-hand notation, we write:

NDEx,x′(Y ) =
∑

z

[E(Y |x′, z) − E(Y |x, z)]P (z|x). (6)

The intuition is simple, the natural direct effect is the weighted average of the controlled
direct effect, using the pre-transition distribution P (z|x) as a weighting function. Equation
(6) can be estimated by a two-step regression, as will be shown in the sequel.

6Using the structural model of Eq. (2), the formal definition of the natural direct effect reads:

NDEx,x′(Y ) = E[F3(x
′, F2(x, ε2), ε3)] − E[F3(x, F2(x, ε2), ε3)]

Robins and Greenland (1992) called this notion of direct effect “Pure” while Pearl called it “Natural,” to
stress the natural, unperturbed distribution of values, Z = F2(x, ε2) at which we “freeze” Z while changing
X from X = x to X = x′. For discussions regarding policy implications of NDE versus CDE, see (Pearl,
2001; Robins, 2003; Joffe et al. 2007; Hafeman and Schwartz, 2009; Pearl, 2009, p. 132; Kaufman, 2010;
Robins and Richardson, 2011; Albert and Nelson, 2011).

7In the presence of measured and unmeasured confounders, the general conditions under which NDE is
estimable from population data are somewhat more stringent than those needed for CDE (footnote 5). For
details see Pearl (2001); Avin, Shpitser, and Pearl (2005); Petersen, Sinisi, and van der Laan (2006); Robins
(2003); VanderWeele (2009); Kaufman (2010); Robins and Richardson (2011); Shpitser and VanderWeele
(2011).
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2.3 Indirect effects

Remarkably, the counterfactual definition of the natural direct effect can be turned around
and provide an operational definition for the indirect effect—a concept shrouded in mystery
and controversy, because it is impossible, by controlling any of the variables in the model, to
selectively disable the direct link from X to Y so as to let X influence Y solely via indirect
paths. Therefore the indirect effect has no “controlled” interpretation.

The indirect effect, IE, of the transition from x to x′ is defined as the expected change in Y
affected by holding X constant, at X = x, and changing Z (for each individual) to whatever
value it would have attained had X been set to X = x′. Formally, this counterfactual
definition reads:

IEx,x′(Y ) = E[F3(x, F2(x
′, ε2), ε3)] − E[F3(x, F2(x, ε2), ε3)] (7)

which is similar to the definition of the natural direct effect (footnote 6) save for exchanging
x with x′ in the first term.

Assuming again the confounding-free model of Fig. 2, the indirect effect defined in (7)
can be reduced to an estimable expression (Pearl, 2001), given by :

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′) − P (z|x)]. (8)

The intuition here is quite different and unveils a nonparametric version of the product-of-
coefficients strategy. The term E(Y |x, z) plays the role of γ in Fig. 1(a), for it specifies how
Y responds to Z for any fixed x, and the difference P (z|x′)− P (z|x) plays the role of β, for
it captures the impact of the transition from x to x′ on the probability of Z. We see that
what was a simple product operation in linear systems is here replaced by a composition
operator that involves summation over all values of Z.

Equation (8) provides a general formula for mediation effects, applicable to any nonlin-
ear system, any distribution, and any type of variables. Moreover, the formula is readily
estimable by regression. Owing to its generality and ubiquity, I have referred to this expres-
sion as the “Mediation Formula” (Pearl, 2009, 2010).

Not surprising, owed to the nonlinear nature of the model, the relationship between the
total, direct and indirect effects is non-additive. The total effect TE of a transition is in fact
the difference (not the sum) between the direct effect and the indirect effect of the reverse
transition. Formally,

TEx,x′(Y ) = NDEx,x′(Y ) − IEx′,x(Y ). (9)

where IEx′,x(Y ) stands for the indirect effect of the transition from X = x′ to X = x. In
linear systems, where reversal of transitions amounts to negating the signs of their effects,
we have IEx,x′ = βγ(x′ − x) = −IEx′,x and the standard additive formula prevails. In
general, however, additivity is a rare occurrence and it is the difference formula in Eq. (9)
that governs the relation between the total direct and indirect effects of the transition from
x to x′.

In the rest of the paper we will drop the letter ‘N ’ from the acronym NDE, with the
understanding that DE stands for the natural direct effect estimand given by Eq. (6), and
use the acronyms TE, DE and IE for the total, direct and indirect effects, respectively.



3 THE MEDIATION FORMULA: A SIMPLE SOLUTION TO A THORNY PROBLEM8

3 The Mediation Formula: A Simple Solution to a

Thorny Problem

This subsection demonstrates how the Mediation Formula of Eq. (8) can be applied in as-
sessing mediation effects in nonlinear models. We will use the standard mediation model of
Fig. 2, where all error terms are assumed to be mutually independent, with the understand-
ing that adjustment for appropriate sets of covariates W may be necessary to achieve this
independence (see footnote 7), that Z may represent a vector of variables, and that integrals
should replace summations when dealing with continuous variables (Imai, Keele, & Tingley,
2010).

The Mediation Formula (8) represents the average increase in the outcome Y that the
transition from X = x to X = x′ is expected to produce absent any direct effect of X on Y .
When the outcome Y is binary (e.g., recovery, or hiring) the ratio (1−IE/TE) represents the
fraction of responding individuals that is owed to direct paths, while (1−DE/TE) represents
the fraction owed to Z-mediated paths. (A response is “owed” to a path if it would not have
occurred were it not for the mechanism represented by that path.) These two groups are
not necessarily mutually exclusive as can be seen in our enzyme example; individuals who
respond only in the presence of both the enzyme and the drug should owe their response to
both the direct and indirect paths. In linear systems, where the two fractions correspond to
1 − βγ/τ and 1 − α/τ , respectively, they add up to one (see Eq. (1)) and the latter goes by
the name “proportion mediated” (MacKinnon, 2008, p. 82).

3.1 Estimating mediation effects:

The Mediation Formula (8) tells us that IE depends only on the conditional expectation of
Y , not on its distribution. It calls therefore for a two-step regression which, in principle, can
be performed nonparametrically. In the first step we estimate the conditional expectation

g(x, z) = E(Y |x, z) (10)

for every (x, z) cell. In the second step we fix x and regard g(x, z) as a function gx(z) of Z.
We now estimate the conditional expectation of gx(z), conditional on X = x′ and X = x,
respectively, and take the difference

IEx,x′(Y ) = EZ|X [gx(z)|x′] − EZ|X [gx(z)|x]. (11)

Nonparametric estimation is not always practical. When Z consists of a vector of several
mediators, the dimensionality of the problem might prohibit the estimation of E(Y |x, z)
for every (x, z) cell, and the need may arise to use parametric or semi-parametric approx-
imations. We can then choose an appropriate parametric form for E(Y |x, z) (e.g., linear,
logit, probit), estimate the parameters separately (e.g., by regression or maximum likelihood
methods), insert the parametric approximation into (8) and estimate its two conditional
expectations (over z) to get the mediated effect (VanderWeele, 2009).

Both parametric and nonparametric methods will be demonstrated in the next three
subsections.
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3.2 The linear case

Let us examine what the Mediation Formula yields when applied to the linear version of our
model, shown in Fig. 1(a):

x = a0 + ε1, z = b0 + βx + ε2, y = c0 + αx + γz + ε3 (12)

with ε1, ε2, and ε3 uncorrelated, zero-mean error terms and a0, b0, c0 the regression intercepts.
Computing the conditional expectation in (8) gives E(Y |x, z) = c0 + αx + γz, and yields

IEx,x′(Y ) =
∑

z

(c0 + αx + γz)[P (z|x′) − P (z|x)] = γ[E(Z|x′) −E(Z|x)] (13)

= (x′ − x)(βγ) = (x′ − x)(τ − α) (14)

where τ is the slope of the total effect;

τ = (E(Y |x′) − E(Y |x))/(x′ − x) = α + βγ. (15)

We thus obtained the standard expressions for indirect effects in linear systems, which can
be estimated either as a difference τ − α of two regression coefficients or as a product βγ of
two regression coefficients (see MacKinnon, Lockwood, et al., 2007). These two strategies
do not generalize to nonlinear systems (Pearl, 2011a) as will be shown next.

3.3 Linear models with interaction

To understand the difficulty, assume that the correct model behind the data contains a
product term xz in the equation for y:

y = c0 + αx + γz + δxz + ε3,

a nonlinear model explored by many researchers (Judd & Kenny, 1981; Jo, 2008; Kraemer,
Kiernan, Essex, & Kupfer, 2008; MacKinnon, 2008). Further assume that we correctly
account for this added term and, through diligent analysis on a large data set, we obtain
accurate estimates of all parameters in this model. It is still not clear what combinations
of parameters measure the direct and indirect effects of X on Y , or, more specifically, how
to assess the fraction of the total effect that is explained by mediation and the fraction that
is owed to mediation.8 In linear analysis, the former fraction is captured by the product
βγ/τ , the latter by the difference (τ −α)/τ (Eq. 14) and the two quantities coincide. In the
presence of interaction, however, each fraction demands a separate analysis.

To witness, substituting the nonlinear equation in (4), (6), and (8) and assuming x = 0
and x′ = 1, yields the following decomposition:

DE0,1 = α + b0δ, IE0,1 = βγ

TE0,1 = α + b0δ + β(γ + δ) = DE0,1 + IE0,1 + βδ

8By “explain” we mean “sufficient to sustain even in the absence of direct effect.” By “owed to” we mean
“would not occur absent of mediation.” These interpretations follow from the counterfactual definitions
formulated in Section 2, of which Eqs. (6) and (8) are derived statistical estimands.
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We conclude that the portion of output change for which mediation would be sufficient is
IE0,1 = βγ, while the portion for which mediation would be necessary is TE0,1 − DE0,1 =
βγ + βδ. In other words, the strength of mediation as measured by the size of the indirect
effect, βγ, is not the same as that measured by subtracting the direct effect, β(γ + δ). The
difference, βδ, is caused by the interaction term δxy and is not affected by α. We further
note that, if two populations differ only in the β parameter, they will have the same direct
effect, DE, but will differ in the difference TE − IE. The former measures the portion
explained by the direct effect and the latter the portion owed to the direct effect. These
conclusions are not readily discernible from the structural equations without the guidance
of the Mediation Formula and, indeed, they have not been addressed in previous analyses of
this interaction model (Judd & Kenny, 1981; Jo, 2008; Kraemer et al., 2008; MacKinnon,
2008; Judd & Kenny, 2010).

We note that, due to interaction, a direct effect can be sustained even when the parameter
α vanishes, and a total effect can be sustained even when both the direct and indirect effects
vanish. This illustrates that estimating parameters in isolation tells us little about the effect
of mediation and, more generally, mediation and moderation are intertwined; each mediator
can act as a moderator and each moderator, if affected by X, must act as a mediator as well.
Although the degree of moderation can be assessed separately from that of mediation, it is
not necessary to base the assessment of one on the assumption that the other is absent, as
suggested by some writers (Baron & Kenny, 1986; Kraemer et al., 2008).9

If the policy evaluated aims to prevent the outcome Y by way of weakening the mediating
pathways, the target of analysis should be the difference TE − DE, which measures the
highest prevention potential of any such policy. This maximum will be realized when the
mediating path is totally suppressed, thus reducing the total effect from TE to DE, hence
the difference TE − DE. If, on the other hand, the policy aims to prevent the outcome
by weakening the direct pathway, the target of analysis should shift to IE, for TE − IE
measures the highest preventive potential of this type of policy.

3.4 The binary case

The power of the Mediation Formula shines in studies involving categorical variables. To
illustrate, we consider the case where all variables are binary; generalizations to multi-
valued variables are straightforward. The low dimensionality of the binary case permits a
nonparametric solution and an explicit demonstration of how mediation can be estimated
directly from the data.

Assume that the observed data is given by Table 1. The factors E(Y |x, z) = gx,z and
E(Z|x) = hx can be readily estimated, as shown in the two right-most columns of Table 1

9The degree of moderation exerted by any variable Z is measured by the difference between the controlled
direct effects at two levels of Z, CDE(Z = z1) − CDE(Z = z0) (see Eq. (3)). As in mediation, when
confounding is present, an unbiased estimation of moderation requires adjustments for covariates that can
be identified by graphical methods (see footnote 5).
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Number
X Z Y E(Y |x, z) = gx,z E(Z|x) = hxof Observations

n1 0 0 0 n2

n1+n2

= g0,0
n3+n4

n1+n2+n3+n4

= h0
n2 0 0 1
n3 0 1 0 n4

n3+n4

= g0,1n4 0 1 1

n5 1 0 0 n6

n5+n6

= g1,0
n7+n8

n5+n6+n7+n8

= h1
n6 1 0 1
n7 1 1 0 n8

n7+n8

= g1,1n8 1 1 1

Table 1: Computing the Mediation Formula from empirical data, for the model in Fig. 2,
with X, Y, Z binary.

and, when substituted in (4), (6), and (8), yield

DE = (g1,0 − g0,0)(1 − h0) + (g1,1 − g0,1)h0 (16)

IE = (h1 − h0)(g0,1 − g0,0) (17)

TE = g1,1h1 + g1,0(1 − h1) − [g0,1h0 + g0,0(1 − h0)] (18)

We see that logistic or probit regression is not necessary; simple arithmetic operations suffice
to provide a general solution for any data set, regardless of the data-generating process.

3.5 Numerical example

To anchor these formulas in a concrete example, let us assume that X = 1 stands for a
drug treatment, Y = 1 for recovery, and Z = 1 for the presence of a certain enzyme in a
patient’s blood which appears to be stimulated by the treatment. Assume further that the
data described in Tables 2 and 3 was obtained in a randomized clinical trial and that all
omitted factors (ε2 and ε3 in Fig. 2) are judged to be independent. Our research question is
what role does Z play in transmitting the action of X on Y , or, more specifically, to what
extent does enhanced secretion of enzyme assist the remedial action of the drug on recovery.

To further motivate the example, we note that the question above is far from being
hypothetical, but comes up often in planning and decision making. For example, suppose
someone proposes the development of a much cheaper drug, equal in all respects to the
one under study, save for lacking any effect on enzyme production. To determine the cost-
benefit tradeoffs of the proposed development, we ask what reduction in efficacy, TE −DE,
is expected from the proposed new drug.

Substituting this data into Eqs. (16)–(18) yields:

DE = (0.40 − 0.20)(1 − 0.40) + (0.80 − 0.30)0.40 = 0.32

IE = (0.75 − 0.40)(0.30 − 0.20) = 0.035

TE = 0.80 × 0.75 + 0.40 × 0.25 − (0.30 × 0.40 + 0.20 × 0.10) = 0.46

IE/TE = 0.07 DE/TE = 0.696 1 − DE/TE = 0.304
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Treatment Enzyme present Percentage cured
X Z gx,z = E(Y |x, z)

YES YES g1,1 = 80%
YES NO g1,0 = 40%
NO YES g0,1 = 30%
NO NO g0,0 = 20%

Table 2:

Treatment Percentage with
X Z present
NO h0 = 40%
YES h1 = 75%

Table 3:

We conclude that 30.4% of all recoveries is owed to the capacity of the treatment to enhance
the secretion of the enzyme,10 while only 7% of recoveries would be sustained by enzyme
enhancement alone. The enzyme seems to act more as a catalyst for the healing process of
X than having a healing action of its own. The policy implication of such a study would be
that efforts to develop a cheaper drug, identical to the one studied, but lacking the potential
to stimulate enzyme secretion would face a reduction of 30.4% in recovery cases. More
decisively, proposals to substitute the drug with one that merely mimics its stimulant action
on Z but has no direct effect on Y are bound for failure; the drug evidently has a beneficial
effect on recovery that is independent of, though enhanced by enzyme stimulation.

It is instructive at this point to unfold the intuition behind the IE formula (Eqs. (8) or
(17)) as reflected in our numerical example. Our task is to evaluate the fraction of recoveries
that would be sustained solely by the drug enhancement of enzyme secretion absent any other
effect the drug may have on the outcome. Table 2 reveals that, under no drug condition,
a subject carrying the enzyme has a (0.30 − 0.20) greater chance of recovering than one
without the enzyme. Table 3 shows that the drug increases the proportion of the former
subjects by (0.75−0.40). Therefore, multiplying the increase in enzyme counts (0.75−0.40)
by the increase in cure rate (0.30 − 0.20) gives IE = 0.035, which is about 7% of the total
effect (TE).

4 Relations to Traditional Approaches

Conventional methods do not define direct and indirect effects in nonlinear settings where
the underlying process is unknown, nor do they agree on a principle for defining those effects
when the process is known. (MacKinnon, 2008, Ch. 11), for example, analyzes categorical
data using logistic and probit regressions and constructs effect measures using products and
differences of the parameters in those models. These measures are not compatible with
the causal interpretation of effect measures, even when the parameters are precisely known;
IE and DE may be extremely complicated functions of those regression coefficients (Pearl,
2011a). Fortunately, those coefficients need not be estimated at all; mediation measures
can be estimated directly from the data (16–18), circumventing the parametric analysis
altogether.

Attempts to extend the difference and product heuristics to nonparametric analysis have

10These percentages refer to population level proportions, not to individuals. It is quite possible that more
than 30.4% of those recovered will remain ill without enhanced enzyme secretion, if a balancing group of
uncured patients would actually gain recovery as a result of no enhancement.
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encountered ambiguities that the Mediation Formula can now resolve.
The product-of-coefficients heuristic advises us to multiply the unit effect of X on Z

Cβ = E(Z|X = 1) −E(Z|X = 0) = h1 − h0

by the unit effect of Z on Y given X,

Cγ = E(Y |X = x, Z = 1) − E(Y |X = x, Z = 0) = gx,1 − gx,0

but does not specify on what value we should condition X. Equation (17) resolves this
ambiguity: Cγ should be conditioned on X = 0 in order for the product CβCγ to yield the
correct mediation measure, IE.

The difference-in-coefficients heuristics instructs us to estimate the direct effect coefficient

Cα = E(Y |X = 1, Z = z) − E(Y |X = 0, Z = z) = g1,z − g0,z

and subtract it from the total effect, but does not specify on what value we should condition
Z. Equation (16) determines that we should condition on both Z = 0 and Z = 1 and take
their weighted average, using h0 = P (Z = 1|X = 0) as the weighting function.

To summarize, the Mediation Formula dictates that, in calculating IE, we should con-
dition on both Z = 1 and Z = 0 and average while, in calculating DE, we should condition
on only one value, X = 0, and no average need be taken.

The difference and product heuristics are both legitimate, with each seeking a different ef-
fect measure. The difference-in-coefficients heuristics, leading to TE−DE, seeks to measure
the fraction of the response for which mediation was necessary. The product-of-coefficients
heuristics, leading to IE, seeks to estimate the fraction of response for which mediation
would be sufficient. The former informs policies aimed at suppressing mediating pathways;
the latter informs those aimed at suppressing direct pathways.

In addition to providing causally sound estimates for mediation effects, the Mediation
Formula also enables researchers to evaluate analytically the effectiveness of various para-
metric specifications relative to any assumed model (Pearl, 2011a; Imai, Keele, & Tingley,
2010). This type of analytical “sensitivity analysis” could not be applied to mediation anal-
ysis, owing to the absence of an objective target quantity that captures the notion of indirect
effect in nonlinear systems, free of parametric assumptions. The Mediation Formula of Eq.
(8) explicates this target quantity.

The power of the Mediation Formula was recognized by Petersen et al. (2006); Glynn
(2009); VanderWeele and Vansteelandt (2009); Hafeman and Schwartz (2009); Mortensen,
Diderichsen, Smith, and Andersen (2009); VanderWeele (2009); Kaufman (2010); Imai,
Keele, and Tingley (2010). Imai, Keele, and Yamamoto (2010) have further shown that
nonparametric identification of mediation effects allows for a flexible estimation strategy
and illustrate this with various nonlinear models, quantile regressions, and generalized ad-
ditive models. Imai, Keele, Tingley, and Yamamoto (2010) describe an implementation of
these extensions using a convenient R package. Sjölander (2009) provides bound on DE in
cases where the confounders between Z and Y cannot be controlled.

The ability of the Mediation Formula to carry us across the linear-nonlinear barrier
may suggest that, similar to traditional path analysis in linear systems, we can now assess
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(nonparametrically) the mediating effect of any chosen path or a bundle of paths in a causal
diagram (Alwin & Hauser, 1975; Bollen, 1989). This turned out not to be the case. Avin
et al. (2005) showed that there are many bundles of paths (i.e., subgraphs) in a graph G
whose mediation effects cannot be assessed from either observational or experimental studies,
even in the absence of unobserved confounders. They proved that the mediation effect of a
subgraph SG is estimable if and only if it contains no “broken fork,” that is, a path p1 from
X to some vertex W , and two paths, p2 and p3, from W to Y , such that p1 and p2 are in
SG and p3 is in G but not in SG.

Clearly, a broken fork condition cannot occur in the graph of Fig. 1(b), which enables us
to assess the mediation effect of any subset of {Z1, Z2, Z3}. However, if we add the arrow
Z3 → Z2, then the effect contributed by the path X → Z3 → Z2 → Y would not be
estimable, because removing the path p3 : Z3 → Y from the evaluated subgraph, creates
a “broken fork.” The controlled direct effect, in contrast, is always estimable when there
are no unmeasured confounders and, for any graph and any subset Z, it is given by the
truncated-factorization formula (Pearl, 2009, p. 72).

Conclusions

Traditional methods of mediation analysis have been limited to linear models or semi-linear
regression models, and have produced distorted estimates of “mediation effects” when applied
to nonlinear models, or models with categorical variables. This paper offers a causally sound
alternative that asymptotically ensures bias-free estimates while making no assumption on
the distributional form of the underlying process.11

We distinguished between proportion of response cases for which mediation was necessary

and those for which mediation would have been sufficient. Both measures play a role in me-
diation analysis, and are given here a formal representation through the Mediation Formula.
This formula is estimable by ordinary regression and provides an objective measure of the
extent to which an effect is mediated through a given mediating path, independent of the
method chosen for estimating that effect. While the validity of the formulas rests on the
same assumptions that are required for standard linear analysis (i.e., no unmeasured con-
founders), their general appeal to nonlinear systems, continuous and categorical variables,
and arbitrary complex interactions render them a powerful tool for the assessment of causal
pathways in many of the health related sciences.
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Sjölander, A. (2009). Bounds on natural direct effects in the presence of confounded inter-
mediate variables. Statistics in Medicine, 28, 558–571.

Sobel, M. E. (2008). Identification of causal parameters in randomized studies with mediating
variables. Journal of Educational and Behavioral Statistics, 33, 230–231.

Tian, J., & Shpitser, I. (2010). On identifying causal effects. In R. Dechter, H. Geffner,
& J. Halpern (Eds.), Heuristics, probability and causality (pp. 415–444). UK: College
Publications.

VanderWeele, T. (2009). Marginal structural models for the estimation of direct and indirect
effects. Epidemiology, 20, 18–26.

VanderWeele, T., & Vansteelandt, S. (2009). Conceptual issues concerning mediation,
interventions and composition. Statistics and Its Interface, 2, 457–468.


